Surface effects in nanoparticles : application to maghemite γ - Fe
نویسندگان
چکیده
We present a microscopic model for nanoparticles, of the maghemite (γ-Fe2O3) type, and perform classical Monte Carlo simulations of their magnetic properties. On account of Mössbauer spectroscopy and high-field magnetisation results, we consider a particle as composed of a core and a surface shell of constant thickness. The magnetic state in the particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions and bulk and surface anisotropy. We consider the case of ellipsoidal (or spherical) particles with free boundaries at the surface. Using a surface shell of constant thickness (∼ 0.35 nm) we vary the particle size and study the effect of surface magnetic disorder on the thermal and spatial behaviors of the net magnetisation of the particle. We study the shift in the surface " critical region " for different surface-to-core ratios of the exchange coupling constants. It is also shown that the profile of the local magnetisation exhibits strong temperature dependence, and that surface anisotropy is reponsible for the non saturation of the magnetisation at low temperatures.
منابع مشابه
The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells
Sodium hyaluronate (HA) was associated with dopamine (DPA) and introduced as a coating for maghemite (γ-Fe(2)O(3)) nanoparticles obtained by the coprecipitation of iron(II) and iron(III) chlorides and oxidation with sodium hypochlorite. The effects of the DPA anchorage of HA on the γ-Fe(2)O(3) surface on the physicochemical properties of the resulting colloids were investigated. Nanoparticles c...
متن کاملEvaluation of iron oxide nanoparticle biocompatibility
Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous sp...
متن کاملDual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.
We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Sub...
متن کاملSynthesis and characterization of magnetic γ- Fe2O3 nanoparticles: Thermal cooling enhancement in a sinusoidal headbox
Nano-size maghemite (γ-Fe2O3) particles were prepared in one step using ultrasound radiation. The obtained nanoparticles were characterized by SEM, TEM , XRD, FTIR, and VSM. The results revealed that the synthesized nanoparticles were spherical, mono-dispersed and uniform. Furthermore, the crystalline structure of nanoparticles endorsed by X-ray diffraction study. The FTIR spectra have provided...
متن کاملInfluence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells
Surface-modified maghemite (γ-Fe2O3) nanoparticles were obtained by using a conventional precipitation method and coated with D-mannose and poly(N,N-dimethylacrylamide). Both the initial and the modified particles were characterized by transmission electron microscopy and dynamic light scattering with regard to morphology, particle size and polydispersity. In vitro survival of human stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999